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Note 

Recurrence Formulas for Phases and Amplitudes of 

Spherical Functions of a Free Wave 

In this work two-term recurrence formulas for the spherical Bessel’s functions jL(p) and nL(p) are 
established, discussed and numerically applied. 

1. INTRODUCTION 

It is well known [2] that, with two linear operators defined in the interval 
o<p<+oo 

bL = (L/p) It (444, (1.1) 

we can factor each of the radial equations for spherical fnnctions of a free wave 

r; ( 2 + 1 _ w + 1) 
P2 )I UL(f) = 0, L = 0, 1, 2 ,...) 

as follows 
h-Lh+LuL = uL , (1.3a) 

hL+lhfi+luL = + u L* (1.3b) 

On multiplying on the left (1.3a) by h+L and (1.3b) by h? one obtains, after com- 
paring the results with (1.3b) and (1.3a), respectively, 

uL-l = h+LuL 

and 

uL+l = h!+‘uL . 

These are the basic recurrence formulas for the present work. 

(I .4a) 

(1.4b) 

2. THE PHASES h(p) AND THE FUNCTIONS OF THE AMPLITUDE &(p) AND THEIR 
ASYMPTOTIC BEHAVIOR 

Consider the spherical functions [5] 

J&J) = f!L@)9 gL(P) = PLO 

which are two linearly independent solutions of radial Eq. (1.2). 
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By definition 

sin +L cm $L 
fL=5""' - gL = g'" . (2.2) 

L 

Hence 

tan(h) = hh (2.3) 

and 
5~ = V[p2(jL2 + nL2>l. (2.4) 

Differentiating (2.3), using (2.4) and the Wronskian for the spherical Bessel’s 
functions [5] one has 

5~ = +,I+. (2.5) 

From the asymptotic behavior of j,(p) and nL(p) we deduce that for large values 
OfP 

4L$d, -+ P - v7-49 (2.6) 

and, by differentiation 

pi 5L(P) = 1. (2.7) 

Note that the spherical functions in (1.4) may be written as 

ULCO) = GfLbI + &L(f) (2.8) 

where a and b are constant coefficients. 

3. RECURRENCE RELATIONS FOR 4L(p) AND CL(p) 

Choose 

UL@) = tTL(P) + ifL(P). 

According to (2.2) we may write 

UL(P) = 5i!1'2) exp(+L), 

Substituting (3.2) in (1.4), we obtain, after putting d&/dp = CL , 

[i!‘:“’ . exp(i$L-I) = (vL+ + itL) &(1’2) . exp(i4L), 

(3.1) 

(3.2) 

(3.3a) 

Gl’:“’ * expti+L+l) = (7)L- - ilL) &(1’23 . exp(i$L), (3.3b) 

where 
lldcL L 

?L+= -zz 
dp+p 
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and 

11 diL+L+l 
““-=zz- - dP P . 

We immediately see that 

rlL+ + 7),- = w + 1)/p. (3.4) 

Separating real and imaginary parts and using logarithms we easily obtain for (3.3a) 

+L--l = +L - tan-l (5) + 5, (3.5a) 

L-l = (rlL+)2; (532 CL' (3.5b) 

and, for (3.3b), 

#L+~ = $L + tan-l (2) - $, 

CL+1 = * 
tqL-j2 + (5L)2 . sL. 

(3.6a) 

(3.6b) 

Change L into L - 1 in (3.6a) and compare the result with (3.5a). We obtain 

72-l r,=g- (3.7) 

Therefore, if we change L into L - 1 in (3.4) and substitute vi-, from (3.7), we obtain 

?I:-1 = 
2L - 1 CL-1 

P 
lL rlL+* (3.5c) 

Similarly 

2L + 3 CL,, v;+l = ~ - -- 

P 
lL rlL-* (3.6~) 

Equations (3.5) and (3.6) give the values of $L(p), L(p), and Q-(J) (or vL+(P)) for 
any L, once the same functions are known for a particular value of L. 

Using (3.5b), (3.6b), and (2.7) we have 

!+$ ?1L++(p) = F+E 17 L-(p) = 0. (3.8) 

The set of recurrence formulas (3.6) have already been obtained for spherical 
Coulomb functions [3, 41. 
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4. CL(p) ANP,T,*(~) AS RATIONAL FUNCTIONS OF p 

To obtain these functions we require the explicit forms for the j&) and g&), or 
for the u&) as defined in (3.1). It is well known [5] that 

UL = gL + ifL. 

= exp i [( 
p - k)] (CL + iSd, 2 

where 

CL + St = 2 
(L+n)! in 

n=. n!(L - n)! 2p . i ) 

(4.1) 

(4.2) 

A simple inspection of (4.1) and (4.2) shows that 

kdf) + tf~(p)L - exp[i(p - (LG))]. (4.3) 

Thus, the above formulas forf,(p) and g&) have correct asymptotic behavior. 
From (2.1) (2.4), and (3.4) we now obtain 

5L = l/KCLY + (SL)% (4.4) 

rlL+- = 
( 

CL $ + SL ~)/KCLY + (SLY1 + up, (4.5a) 

TlL- = - 
( 

CL $$ + SL ~)/[W + (SLj21 + (L + 1)/p, (4.5b) 

In Table I we give the analytical expressions of $&I), L&I), and Q-(P) for L = 0, 1,2. 

TABLE I 

L=O L=l L=2 

+L(P) P p + tan-’ (l/p) - (742) p+tan-l(+)+fan-l(y)--ir 

[L(P) 1 Pa/u + P”) [Pv + P")l/K3 + WY + P"1 
7lLdJ) l/P (3 + 2PwP(l + PYI T/P - IPU + p2)(3 + 2~%/[(3 + 2~“)~ + p”] 

The CL(p) and Q-(P) are obtained directly from (4.4) and (4.5b). The &(p) are 
derived from (3.6a) taking & = p. In fact, from (2.1), (4.1), and (4.2) we have 

.io = sin flf, no = cos p/p (46) 

and from (2.3), we obtain 
tan(&) = tan p, (4.7) 
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5. RECURRENCE RELATIONS FOR fL(p) ANP gt(p) OR jLcp> AND n&) 

Consider Eqs. (3.1), (3.3a), and (3.3b). We have 

STL-I + if-1 = (rlL+ + j5L) kL + Q-L), 

gL+l + ifL+1 = (rlL- - i5L) kL + $i), 

(5. la) 

(5.lb) 

or, by separating the real and imaginary parts, 

h-l = ‘IL+fL + 5LgL 3 

g,-1 = rlL+gL - 5LfL > 

and, similarly, 

fL+l = TL-fL - 5LgL , 

gL+l = rlL-gL + WL . 

Use (2.1) to produce two-term recursion, formulas for jL@) and n,(p) 

(5.2a) 

(5.2b) 

(5.3a) 

(5.3b) 

jL+, = 

nL+l = 

CL+1 = 

T)i+1 = 

.io = sin PIP, 
no = ~0s p/p, 
co= 1, 

rlo- = UP, 

rlL-jL _ SLnL, 

rlL-nL + LjL, 

iL/K?lL-Y t (5LY1, 

2L + 3 CL,, 

~ - -z 7)L-. P 

(5.4) 

(5.5) 

6. BEHAVIOR OF &L(p), CL(p), rlL*(p), AND THE SPHERICAL FUNCTIONS ATTHE ORIGIN 
AND FOR L>>p 

The following discussion is necessary for the analysis of the numerical results given 
in the next section. 

From (4.2) and (4.4) we have when p is small 

2 
SL(P)P-tO - [ 2Ltl 

(2L + 
l)!! I 

p2L 
I l 

2 

- 2Lpw 
1 

*?- ... 1 
and, by integrating (see (2.5)) CL(p) from zero to p, 

(6.1) 

4L(Ph-t0 - 2L + l [ 
w + l)p2 

[(2L + 1)!!]2p2L+1 ’ - (2L + 3)(2L - 1) 
+ *..I. (6.2) 



SPHERICAL FUNCTIONS OF A FREE WAVE 187 

We remark that the lower limit of integration has been taken equal to zero because 
fL(0) = 0 requires that &(O) = 0 (see (2.1)). 

Next, from (2.2), (6.1), and (6.2) we obtain 

fL(P)m+0 -+ (2Lyl)!! [ ’ - 2(2Lp+ 3) + --I 
and 

(iL + l)!! 1 L 
gL(fJLl- 2L + 1 p 0 [ 1 + 2(2[1 1) + --]g 

Next, we shall prove that the first two terms of the developments at the origin of 
L(P), ALES.&) and gL@) h s own above are exactly the same as those of the same 
functions for L > p, so that, maintaining p fixed, we may substitute p -+ 0 by L -+ co 
in all the formulas (6.1), (6.2), and (6.3). 

Suppose, then, that L > p. Radial Eq. (1.2) can be written approximately in this 
case as 

d2uL -- 
dP2 

w+ 1) u =o 
p2 L . 

This equation has two linearly independent solutions pL+’ and (l/~)~. Make the 
variable transformation uL = pL+lvL in radial Eq. (2.1). We have 

d2vL 

dP2 

+ 265 + 1) du, 
P T- -I- vL = O- 

This equation for v&) can be solved approximately, in the case under consideration 
of L > p, by neglecting the term in d2vL/dp2. We have then 

[ 

2 
vL m cLexp - 

4(LP’, 1) * I 

Putting this solution back into the exact Eq. (6.4) we find that the error made in this 
approximation is equal to (Lpl(2L + 2)12 - 1/(2L + 2)}uL . Comparing the solution 
of uL(p) obtained in this way with the development (6.3a) off,(p), we see that, apart 
from a multiplicative constant cL , they agree in the first two terms, except for a slight 
difference in the denominator of the argument of the exponential. Therefore, if we 
correct the function for Q(P) as follows 

[ 

2 
uL(p) = cL exp - 2(2Lp+ 3) 1 ’ 

and put c, = 1/(2L + l)!!, we obtain forf,(p) 

“fL@) ~**orL+m - (2L c I)! ! exp - 2(2/-c+ [ 3) 1 ’ 

(6.5) 

(6.6a) 
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where the symbol (p + 0, or L -+ 00) means that the statements p -+ 0 and L -+ co 
cannot be valid simultaneously. Evidently, the error made in (6.4) by using the 
function (6.5) for U&I) is reduced to [p/(2L + 3)12 vl. . 

Similarly, by making the variable transformation u=(p) = vL@)/pL, corresponding 
to the solution (l/p)” of the approximate radial equation, and by following the same 
steps we just took for obtaining the two-limit formula (6.6a) forf,(p), 

gr(P) ~0, or L+m + 

Therefore, by (2.3) 

(6.6b) 

4L(P) rr+o. or L+m - (;;L++ly);f; exP{-p2(2L + 1)/[(2L + 3)(2L- l)]) (6.7) 

and, by differentiation (see (2.5)) 
2 

CL(P) 2L+l 
2 

p-0. - or L-tm - [ (2L + l)!! 1 p2L exp ( 2LPL 1 1 . (6.8) 

Note that the first two terms in the developments of (6.7) and (6.8) are exactly the 
same as those of the developments given respectively, in (6.2) and (6.1) for #L@) and 
5Lb). 

Next, we calculate g(d/dp) (log CL) from (6.8) and by introducing this term into the 
definitions of am* (see formulas above (3.4)) we determine how these functions 
behave at the origin or for L > p 

and 
rl L+(P) p+o. or I.-xx 

-2i5T 

rl L-(P) 
2L + 1 

P-+0, or L+m +-----6. 
P 

(6.9a) 

(6.9b) 

Before closing this section we would like to point out that, according to radial 
Eq. (1.2), any of its solutions has points of inflexion at p. = (L(L + 1))lf2 or at any 
one of its zeros. Therefore, the solutions fL(p) and gL(p) of this equation, that are 
positive near the origin (see (6.3)) and have positive curvatures there, cannot change 
signs before crossing a point of inflexion. As their zeros are beyond p. , with the 
exception of the origin belonging to fL(p) (see [l, p. 440]), we can say that fL(p) and 
gL(p) (and consequently j,(p) and nL(p)) are defined positive functions in the interval 
o<p <PO. 

It is also well known that the zeros offL(p) and gL(p) interlace. Therefore the first 
zero of g&) lies between p. and the second zero off,(p). 

This property helps to understand the behavior of the phases with p. In fact ySL(p) is 
in increasing positive function on the interval 0 4 p < + co, because it is positive 
near the origin (see (6.2) or (6.7)) and its derivative CL(p) is also a positive function in 
the same interval (see Section 4). Therefore, when p goes from zero to infinity, $L(p) 
starts at the origin, then increases up to n/2 when p attains the first zero of gL(p),’ then 
up to n when p reaches the second zero off,(p), then goes into 3~12 at the second zero 
of gL(p) and so on. 
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7. ‘NUMERICAL CALCULATIONS. INSTABILITY OF SOME OF THE PRECEDING FUNCTIONS 

Tables II and III give some numerical values of the functions &@), j,(p), and n&) 
for p = 10. 

The columns marked “FORWARD” were calculated using recurrence procedures 
that start at L = 0 and go up step by step until L = 30. The columns marked “BACK- 
WARD” were started at L = 30 and carried on by steps of one unit for a decreasing 
L until L = 0. 

TABLE II 

The “FORWARD” Column is Unstable below the Arrow. 
The “BACKWARD” Column is Stable for any L 

p = 10 

4LW 4L.o 

L FORWARD BACKWARD 

0 .lOOOOOO0E 02 
1 .85288723E 01 
2 .71583545E 01 
3 .58903975E 01 
4 .47281083E 01 
5 .36759911E 01 
6 .27402982E 01 
7 .19294626E 01 
8 .12543731E 01 
9 .72753693E 00 

10 .35844032E 00 
11 .14149005E 00 
12 .42803519E-01 
13 .98857258E-O2 
14 .17966495E-02 
15 .26641372E-O3 
16 .33142982E-04 
17 .35281 IlOE-05 
18 .32610769E& 

-19 .26475452E-07 
20 .19058388E-08 
21 .12261503E-09 
22 .70992101E-11 
23 .37259085E-12 
24 .18429702E-13 
25 .15543122E-14 
26 .88817842E-15 
27 .88817842E-15 
28 .88817842E-15 
29 .88817842E-15 
30 .88817842E-15 

.lOOOOOO0E 02 

.85288723E 01 

.71583545E 01 

.58903975E 01 

.47281083E 01 
.36759911E 01 
.27402982E 01 
.19294626E 01 
.12543731E 01 
.72753693E 00 
.35844032E 00 
.14149005E 00 
.42803519BOl 
.98857258E-O2 
.17966495E-02 
.26641372E-03 
.33142982E-04 
.3528111OE-05 
.32610769E-06 
.26475452E-07 
.190583868-08 
.32261475E-09 
.70987313E-11 
.37203805E-12 
.37743705E-13 
.7737185OE-15 
.3097607OE16 
.11429347E17 
.39000057E-19 
.12345976E-20 
.36362789E-22 
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TABLE III 

The “FORWARD” Column for j,(p) is Unstable below the Arrow. 
The Other Two Columns are Stable for any L 

p = 10 

iLO idA nLw 
- _______. 

L FORWARD BACKWARD FORWARD 

0 -.54402111E-01 
1 .784669428-01 
2 .77942194E-01 
3 -.39495845E-01 
4 -.10558929E 00 
5 -.55534512E-O1 
6 .44501322BOl 
7 .11338623E 00 
8 .12557802E 00 
9 .10009641E 00 

10 .64605154E-O1 
11 .35574415E-01 
12 .17216OOOE-01 
13 .74655845E-02 
14 .29410783E-O2 
15 .10635427E-O2 
16 .35590407E-O3 
17 .11094073E-O3 

+18 .32388474E-04 
19 .88966268E-O5 
20 .23083702E-05 
21 .56769095E-O6 
22 .13270091E-O6 
23 .29463 159E-07 
24 .57759327E-08 
25 -.11610885E-O8 
26 -.11697484E-07 
27 -60835578E-07 
28 -.32289819E-06 
29 -.17796841E-05 
30 -.10177238E-04 

-.5440211 lE-01 
.78466942BOl 
.77942194E-O1 

-.39495845E-01 
-.10558929E 00 
-.55534512BOl 
.44501322E-O1 
.11338623E 00 
.12557802E 00 
.10009641E 00 
.64605154E-01 
.35574415E-01 
.17216OOOE-01 
.74655845E-02 
.29410783E-02 
.10635427E-02 
.35590407E-O3 
.1109407jE-O3 
.32388474E-04 
.88966273E-05 
.23083720E-05 
.56769777E-06 
.13272846E-06 
.2958029OE-07 
.62989045E-08 
.12843422E-08 
.25124088E-09 
.47234414E-10 
.85483986E-11 
.14914584E-11 
.25120574E-12 

-.83907153E-O1 
-.62792826E-01 
.65069305E-01 
.95327479E-01 
.16599302E-02 

-.938335428-01 
-.104876838 00 
-.42506332E-01 
.41117328BOl 
.11240579E 00 
.17245367E 00 
.24974692E 00 
.40196425E 00 
.7551637OE 00 
.16369777E 01 
.39920717E 01 
.10738445E 02 
.3 1444796E 02 
.993 18340E 02 
.33603306E 03 
.12112106E 04 
.46299304E 04 
.18697490E 05 
.79508775E 05 
.35499375E 06 
.16599606E 07 
.81108054E 07 
.41327308E 08 
.21918939E 09 
.12080522E 10 
.69083186E 10 

Note that only the “backward” recurring procedure is stable for $Jp) and j,(p). 
On the contrary the “forward” recurring procedure is stable for nJp>. (Consult 
[l, p. 452; 61). 

In Tables IT and III the arrows indicate the values of L(>p) up to which we can go 
with a precision of eight correct figures for c&(p) andj,(p) by using the corresponding 
“forward” recurrence formulas in a double-precision FORTRAN IV (15 digits) 
programme. 

Consider the mechanism of the instability of qSL(p) and f&) (or j,(p)) when L 
becomes larger than p in a “forward” (increasing L) recurrence procedure. 
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Take, for instance, $Jp). We can rewrite (3.6a) as 

~L+I(P) = #L(P) - tan-l +-- . [Tpgl 
Now, from (6.7) and (6.8) we have for L > p 

+Lw - j&- * M) exp l(2L + 32&L - 1) 1 . 

Similarly we obtain from (6.9b) for the same L 

2L + 1 
rlL-(f) N p ___ exp - - 

[ (2L + &L - 1) 3 . 

(7.1) 

(7.2) 

Thus we have approximately for the second term in the recurrence relation (7.1) 

tan-l [*I Y& 
5L@) exp [(2L + I$2L - 1) I ’ (7.4) 

i.e., a term of the same sign as $&) in (7.2) and very close to it in magnitude. Hence, 
the difference C#~+~ between these terms in (7.1) will be unstable for large L. 

Next we consider fL(p) or j,(p) = f&)/p. The two terms in the recurrence formula 
(5.3a), i.e., 

fL+df) = %-(f)fi@) - 5LW a4 (5.3a) 

give approximately for L > p (see 7.2) and (7.3)) 

TIE-(PI fL(p> _N G”(f) exp [(zL + 3;;2~ + 1 )] (7.5) 
and 

CL(f) g&) CT+ s1L/2(f). (7.6) 

Again these two terms have the same sign and are very close to one another in magni- 
tude, so that their difference (fL+l(p)) becomes numerically inaccurate with increasing 
L. 

Finally we deal with the problem of calculating the initial values to start the “back- 
ward” (decreasing L) recurring procedure. 

The fundamental relation for such a calculation is the recurrence formula (3.5a) 
rewritten as 

4df) = +L+~(P) + tan-l [$+j-] 
.L+1 

(7.7) 

from which we derive the rapidly convergent series 

$~(p) = ?I tan-l [+$-I, 
LfS 

(7.8a) 

when L > p (see (6.8) and (6.9a)). 
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If L is sufficiently larger than p, so that tan-1[&(#7L+(b)] N &(p)/~~+(p) is a 
good approximation, we can simplify (7.8a) and write 

#L(P) 55 $ $j$+ . (7.8b) 

For such values of L and from (5.2b), (6.5), and (6.6) we also have the approximate 
relations 

gLw = 7t+1w &TL,l(P) (7.9) 

and 

L-Lb-4 = llkLW2. (7.10) 

Therefore we can write (7.8b) as 

and from (2.1) and (2.2) 

(7.11) 

The remarkable thing about the expansion (7.12) is that it can be obtained exactly 
(see [6]) from the Wronskian relation 

written as 

.fL(P) gL+dd - fL+dP) tTL(P) = 19 

fLb4 _ fL+lw 1 
L.---- 

gLt(P) gL+l(f) + gLkJ) gL+lw. 

(7.13a) 

(7.13b) 

From this recurrence formula for the ratiofL(p)/gL(P) we immediately obtain (7.12). 
We note that, according to the discussion at the end of Section 6, the gL@) cannot 
vanish for L > p. Thus, the terms of the development (7-12) forfLb) never become 
infinite. 

The functions qL+(p), required in the “backward” recurrence procedure, must be 
calculated by means of the formula (see (3.6b) and (3.7)). 

7L = 7LJK7LJ2 + (5L121. (7.14) 

The “backward” recurrence relation (3.5~) for the determination of the 71L+(p) is 
numerically unstable for L > p. This can be seen by following similar steps as those 
taken in this section in showing the numerical instability of the recurrence relations 
(3.6a) and (5.3a) for +L(p) andf,(p), respectively. 
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Finally we would like to point out that the “foreward” (increasing L) recurrence 
formulas presented in this article for j,@) andf,(p) are more stable than the familiar 
three-term recurrence relation [I, 61. 

All the calculations were performed at the Coimbra University with the SIGMA 5 
XEROX computer. 
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