Note

Recurrence Formulas for Phases and Amplitudes of Spherical Functions of a Free Wave

In this work two-term recurrence formulas for the spherical Bessel's functions $j_{L}(\rho)$ and $n_{L}(\rho)$ are established, discussed and numerically applied.

1. Introduction

It is well known [2] that, with two linear operators defined in the interval $0<\rho<+\infty$

$$
\begin{equation*}
h_{ \pm}^{L}=(L / \rho) \pm(d / d \rho), \tag{1.1}
\end{equation*}
$$

we can factor each of the radial equations for spherical functions of a free wave

$$
\begin{equation*}
\left[\frac{d^{2}}{d \rho^{2}}+\left(1-\frac{L(L+1)}{\rho^{2}}\right)\right] u_{L}(\rho)=0, \quad L=0,1,2, \ldots \tag{1.2}
\end{equation*}
$$

as follows

$$
\begin{align*}
h_{-}^{L} h_{+}^{L} u_{L} & =u_{L}, \tag{1.3a}\\
h_{+}^{L+1} h_{-}^{L+1} u_{L} & =u_{L} . \tag{1.3b}
\end{align*}
$$

On multiplying on the left (1.3a) by $h_{+}{ }^{L}$ and (1.3b) by h_{-}^{L+1} one obtains, after comparing the results with (1.3b) and (1.3a), respectively,

$$
\begin{equation*}
u_{L-1}=h_{+}{ }^{L} u_{L} \tag{1.4a}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{L+1}=h_{-}^{L+1} u_{L} \tag{1.4b}
\end{equation*}
$$

These are the basic recurrence formulas for the present work.
2. The Phases $\phi_{L}(\rho)$ and the Functions of the Amplitude $\zeta_{L}(\rho)$ and Their Asymptotic Behavior

Consider the spherical functions [5]

$$
\begin{equation*}
f_{L}(\rho)=\rho j_{L}(\rho), \quad g_{L}(\rho)=\rho n_{L}(\rho) \tag{2.1}
\end{equation*}
$$

which are two linearly independent solutions of radial Eq. (1.2).

By definition

$$
\begin{equation*}
f_{L}=\frac{\sin \phi_{L}}{\zeta_{L}^{1 / 2}}, \quad g_{L}=\frac{\cos \phi_{L}}{\zeta_{L}^{1 / 2}} \tag{2.2}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\tan \left(\phi_{L}\right)=j_{L} / n_{L} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\zeta_{L}=1 /\left[\rho^{2}\left(j_{L}^{2}+n_{L}^{2}\right)\right] \tag{2.4}
\end{equation*}
$$

Differentiating (2.3), using (2.4) and the Wronskian for the spherical Bessel's functions [5] one has

$$
\begin{equation*}
\zeta_{L}=d \phi_{L} / d \rho \tag{2.5}
\end{equation*}
$$

From the asymptotic behavior of $j_{L}(\rho)$ and $n_{L}(\rho)$ we deduce that for large values of ρ

$$
\begin{equation*}
\phi_{L_{\rho \rightarrow \infty}^{(0)}} \rightarrow \rho-(L \pi / 2) \tag{2.6}
\end{equation*}
$$

and, by differentiation

$$
\begin{equation*}
\lim _{\rho \rightarrow \infty} \zeta_{L}(\rho)=1 \tag{2.7}
\end{equation*}
$$

Note that the spherical functions in (1.4) may be written as

$$
\begin{equation*}
u_{L}(\rho)=a f_{L}(\rho)+b g_{L}(\rho) \tag{2.8}
\end{equation*}
$$

where a and b are constant coefficients.

3. Recurrence Relations for $\phi_{L}(\rho)$ and $\zeta_{L}(\rho)$

Choose

$$
\begin{equation*}
u_{L}(\rho)=g_{L}(\rho)+i f_{L}(\rho) \tag{3.1}
\end{equation*}
$$

According to (2.2) we may write

$$
\begin{equation*}
u_{L}(\rho)=\zeta_{L}^{-(1 / 2)} \exp \left(i \phi_{L}\right), \tag{3.2}
\end{equation*}
$$

Substituting (3.2) in (1.4), we obtain, after putting $d \phi_{L} / d \rho=\zeta_{L}$,

$$
\begin{align*}
& \zeta_{L-1}^{-(1 / 2)} \cdot \exp \left(i \phi_{L-1}\right)=\left(\eta_{L}^{+}+i \zeta_{L}\right) \zeta_{L}^{-(1 / 2)} \cdot \exp \left(i \phi_{L}\right), \tag{3.3a}\\
& \zeta_{L+1}^{-(1 / 2)} \cdot \exp \left(i \phi_{L+1}\right)=\left(\eta_{L}^{-}-i \zeta_{L}\right) \zeta_{L}^{-(1 / 2)} \cdot \exp \left(i \phi_{L}\right), \tag{3.3b}
\end{align*}
$$

where

$$
\eta_{L}^{+}=-\frac{1}{2} \frac{1}{\zeta_{L}} \frac{d \zeta_{L}}{d \rho}+\frac{L}{\rho}
$$

and

$$
\eta_{L}^{-}=\frac{1}{2} \frac{1}{\zeta_{L}} \frac{d \zeta_{L}}{d \rho}+\frac{L+1}{\rho} .
$$

We immediately see that

$$
\begin{equation*}
\eta_{L}^{+}+\eta_{L}^{-}=(2 L+1) / \rho \tag{3.4}
\end{equation*}
$$

Separating real and imaginary parts and using logarithms we easily obtain for (3.3a)

$$
\begin{align*}
\phi_{L-1} & =\phi_{L}-\tan ^{-1}\left(\frac{\eta_{L}^{+}}{\zeta_{L}}\right)+\frac{\pi}{2}, \tag{3.5a}\\
\zeta_{L-1} & =\frac{1}{\left(\eta_{L}^{+}\right)^{2}+\left(\zeta_{L}\right)^{2}} \zeta_{L}, \tag{3.5b}
\end{align*}
$$

and, for (3.3b),

$$
\begin{align*}
\phi_{L+1} & =\phi_{L}+\tan ^{-1}\left(\frac{\eta_{L}^{-}}{\zeta_{L}}\right)-\frac{\pi}{2} \tag{3.6a}\\
\zeta_{L+1} & =\frac{1}{\left(\eta_{L}^{-}\right)^{2}+\left(\zeta_{L}\right)^{2}} \cdot \zeta_{L} . \tag{3.6b}
\end{align*}
$$

Change L into $L-1$ in (3.6a) and compare the result with (3.5a). We obtain

$$
\begin{equation*}
\frac{\bar{\eta}_{\underline{L}-1}}{\zeta_{L-1}}=\frac{\eta_{L}^{+}}{\zeta_{L}} \tag{3.7}
\end{equation*}
$$

Therefore, if we change L into $L-1$ in (3.4) and substitute η_{L-1}^{-}from (3.7), we obtain

$$
\begin{equation*}
\eta_{L-1}^{+}=\frac{2 L-1}{\rho}-\frac{\zeta_{L-1}}{\zeta_{L}} \eta_{L}{ }^{+} . \tag{3.5c}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\eta_{\vec{L}_{+1}}=\frac{2 L+3}{\rho}-\frac{\zeta_{L+1}}{\zeta_{L}} \eta_{L} . \tag{3.6c}
\end{equation*}
$$

Equations (3.5) and (3.6) give the values of $\phi_{L}(\rho), \zeta_{L}(\rho)$, and $\eta_{L}{ }^{-}(\rho)$ (or $\eta_{L}{ }^{+}(\rho)$) for any L, once the same functions are known for a particular value of L.

Using (3.5b), (3.6b), and (2.7) we have

$$
\begin{equation*}
\lim _{\rho \rightarrow \infty} \eta_{L^{+}}^{+}(\rho)=\lim _{\rho \rightarrow \infty} \eta_{L}^{-}(\rho)=0 . \tag{3.8}
\end{equation*}
$$

The set of recurrence formulas (3.6) have already been obtained for spherical Coulomb functions [3, 4].

4. $\zeta_{L}(\rho)$ and $\left.\eta_{L} \pm \rho\right)$ as Rational Functions of ρ

To obtain these functions we require the explicit forms for the $f_{L}(\rho)$ and $g_{L}(\rho)$, or for the $u_{L}(\rho)$ as defined in (3.1). It is well known [5] that

$$
\begin{align*}
u_{L} & =g_{L}+i f_{L} \\
& =\exp \left[i\left(\rho-\frac{L \pi}{2}\right)\right]\left(C_{L}+i S_{L}\right) \tag{4.1}
\end{align*}
$$

where

$$
\begin{equation*}
C_{L}+i S_{L}=\sum_{n=0}^{L} \frac{(L+n)!}{n!(L-n)!}\left(\frac{i}{2 \rho}\right)^{n} \tag{4.2}
\end{equation*}
$$

A simple inspection of (4.1) and (4.2) shows that

$$
\begin{equation*}
\left[g_{L}(\rho)+i f_{L}(\rho)\right]_{\rho \rightarrow \infty} \rightarrow \exp [i(\rho-(L \pi / 2))] . \tag{4.3}
\end{equation*}
$$

Thus, the above formulas for $f_{L}(\rho)$ and $g_{L}(\rho)$ have correct asymptotic behavior.
From (2.1), (2.4), and (3.4) we now obtain

$$
\begin{align*}
\zeta_{L} & =1 /\left[\left(C_{L}\right)^{2}+\left(S_{L}\right)^{2}\right], \tag{4.4}\\
\eta_{L}^{+} & =\left(C_{L} \frac{d C_{L}}{d \rho}+S_{L} \frac{d S_{L}}{d \rho}\right) /\left[\left(C_{L}\right)^{2}+\left(S_{L}\right)^{2}\right]+L / \rho, \tag{4.5a}\\
\eta_{L}^{-} & =-\left(C_{L} \frac{d C_{L}}{d \rho}+S_{L} \frac{d S_{L}}{d \rho}\right) /\left[\left(C_{L}\right)^{2}+\left(S_{L}\right)^{2}\right]+(L+1) / \rho, \tag{4.5b}
\end{align*}
$$

In Table I we give the analytical expressions of $\phi_{L}(\rho), \zeta_{L}(\rho)$, and $\eta_{L}{ }^{-}(\rho)$ for $L=0,1,2$.
TABLE I

	$L=0$	$L=1$	$L=2$
$\phi_{L}(\rho)$	ρ	$\rho+\tan ^{-1}(1 / \rho)-(\pi / 2)$	$\rho+\tan ^{-1}\binom{1}{\rho}+\tan ^{-1}\left(\frac{3+2 \rho^{2}}{\rho^{3}}\right)$
$\zeta_{L}(\rho)$	1	$\rho^{2} /\left(1+\rho^{2}\right)$	π
$\eta_{L}(\rho)$	$1 / \rho$	$\left(3+2 \rho^{2}\right) /\left[\rho\left(1+\rho^{2}\right)\right]$	$\left.5 / \rho-\left[\rho\left(1+\rho^{2}\right)\left(3+2 \rho^{2}\right)\right] / /\left[3+2 \rho^{2}\right)^{2}+\rho^{6}\right]$

The $\zeta_{L}(\rho)$ and $\eta_{L}-(\rho)$ are obtained directly from (4.4) and (4.5b). The $\phi_{L}(\rho)$ are derived from (3.6a) taking $\phi_{0}=\rho$. In fact, from (2.1), (4.1), and (4.2) we have

$$
\begin{equation*}
j_{0}-\sin \rho / \rho, \quad n_{0}=\cos \rho / \rho \tag{4.6}
\end{equation*}
$$

and from (2.3), we obtain

$$
\begin{equation*}
\tan \left(\phi_{0}\right)=\tan \rho \tag{4.7}
\end{equation*}
$$

5. Recurrence Relations for $f_{L}(\rho)$ and $g_{L}(\rho)$ or $j_{L}(\rho)$ and $n_{L}(\rho)$

Consider Eqs. (3.1), (3.3a), and (3.3b). We have

$$
\begin{align*}
& g_{L-1}+i f_{L-1}=\left(\eta_{L}^{1}+i \zeta_{L}\right)\left(g_{L}+i f_{L}\right), \tag{5.1a}\\
& g_{L+1}+i f_{L+1}=\left(\eta_{L}^{-}-i \zeta_{L}\right)\left(g_{L}+i f_{L}\right), \tag{5.1b}
\end{align*}
$$

or, by separating the real and imaginary parts,

$$
\begin{align*}
& f_{L-1}=\eta_{L}+f_{L}+\zeta_{L} g_{L} \tag{5.2a}\\
& g_{L-1}=\eta_{L}{ }^{+} g_{L}-\zeta_{L} f_{L} \tag{5.2b}
\end{align*}
$$

and, similarly,

$$
\begin{align*}
& f_{L+1}=\eta_{L}^{-} f_{L}-\zeta_{L} g_{L} \tag{5.3a}\\
& g_{L+1}=\eta_{L}^{-} g_{L}+\zeta_{L} f_{L} \tag{5.3b}
\end{align*}
$$

Use (2.1) to produce two-term recursion formulas for $j_{L}(\rho)$ and $n_{L}(\rho)$

$$
\begin{gather*}
j_{0}=\sin \rho / \rho, \\
n_{0}=\cos \rho / \rho, \\
\zeta_{0}=1, \\
\eta_{0}==1 / \rho, \tag{5.4}\\
j_{L+1}=\eta_{L}{ }^{-} j_{L}-\zeta_{L} n_{L}, \\
n_{L+1}=\eta_{L}^{-} n_{L}+\zeta_{L} j_{L}, \\
\zeta_{L+1}=\zeta_{L} /\left[\left(\eta_{L}\right)^{2}+\left(\zeta_{L}\right)^{2}\right], \\
\eta_{L_{+1}}=\frac{2 L+3}{\rho}-\frac{\zeta_{L+1}}{\zeta_{L}} \eta_{L}^{-} . \tag{5.5}
\end{gather*}
$$

6. Behavior of $\phi_{L}(\rho), \zeta_{L}(\rho), \eta_{L} \pm(\rho)$, and the Spherical Functions at the Origin AND FOR $L \gg \rho$

The following discussion is necessary for the analysis of the numerical results given in the next section.

From (4.2) and (4.4) we have when ρ is small

$$
\begin{equation*}
\zeta_{L}(\rho)_{\rho \rightarrow 0} \rightarrow\left[\frac{2 L+1}{(2 L+1)!!}\right]^{2} \rho^{2 L}\left[1-\frac{\rho^{2}}{2 L-1}+\cdots\right] \tag{6.1}
\end{equation*}
$$

and, by integrating (see (2.5)) $\zeta_{L}(\rho)$ from zero to ρ,

$$
\begin{equation*}
\phi_{L}(\rho)_{\rho \rightarrow 0} \rightarrow \frac{2 L+1}{[(2 L+1)!!]^{2}} \rho^{2 L+1}\left[1-\frac{(2 L+1) \rho^{2}}{(2 L+3)(2 L-1)}+\cdots\right] \tag{6.2}
\end{equation*}
$$

We remark that the lower limit of integration has been taken equal to zero because $f_{L}(0)-0$ requires that $\phi_{L}(0)=0$ (see (2.1)).

Next, from (2.2), (6.1), and (6.2) we obtain

$$
\begin{equation*}
f_{L}(\rho)_{\rho \rightarrow 0} \rightarrow \frac{\rho^{L+1}}{(2 L+1)!!}\left[1-\frac{\rho}{2(2 L+3)}+\cdots\right] \tag{6.3a}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{L}(\rho)_{p \rightarrow 0} \rightarrow \frac{(2 L+1)!!}{2 L+1}\left(\frac{1}{\rho}\right)^{L}\left[1+\frac{\rho^{2}}{2(2 L-1)}+\cdots\right] \tag{6.3b}
\end{equation*}
$$

Next, we shall prove that the first two terms of the developments at the origin of $\zeta_{L}(\rho), \phi_{L}(\rho), f_{L}(\rho)$ and $g_{L}(\rho)$ shown above are exactly the same as those of the same functions for $L \gg \rho$, so that, maintaining ρ fixed, we may substitute $\rho \rightarrow 0$ by $L \rightarrow \infty$ in all the formulas (6.1), (6.2), and (6.3).

Suppose, then, that $L \geqslant \rho$. Radial Eq. (1.2) can be written approximately in this case as

$$
\frac{d^{2} u_{L}}{d \rho^{2}}-\frac{L(L+1)}{\rho^{2}} u_{L} \simeq 0
$$

This equation has two linearly independent solutions ρ^{L+1} and $(1 / \rho)^{L}$. Make the variable transformation $u_{L}=\rho^{L+1} v_{L}$ in radial Eq. (2.1). We have

$$
\begin{equation*}
\frac{d^{2} v_{L}}{d \rho^{2}}+\frac{2(L+1)}{\rho} \frac{d v_{L}}{d \rho}+v_{L}=0 \tag{6.4}
\end{equation*}
$$

This equation for $v_{L}(\rho)$ can be solved approximately, in the case under considcration of $L \gg \rho$, by neglecting the term in $d^{2} v_{L} / d \rho^{2}$. We have then

$$
v_{L} \approx c_{L} \exp \left[-\frac{\rho^{2}}{4(L+1)}\right]
$$

Putting this solution back into the exact Eq. (6.4) we find that the error made in this approximation is equal to $\left\{[\rho /(2 L+2)]^{2}-1 /(2 L+2)\right\} v_{L}$. Comparing the solution of $u_{L}(\rho)$ obtained in this way with the development (6.3a) of $f_{L}(\rho)$, we see that, apart from a multiplicative constant c_{L}, they agree in the first two terms, except for a slight difference in the denominator of the argument of the exponential. Therefore, if we correct the function for $v_{L}(\rho)$ as follows

$$
\begin{equation*}
v_{L}(\rho) \simeq c_{L} \exp \left[-\frac{\rho^{2}}{2(2 L+3)}\right] \tag{6.5}
\end{equation*}
$$

and put $c_{L}=1 /(2 L+1)!!$, we obtain for $f_{L}(\rho)$

$$
\begin{equation*}
f_{L}(\rho)_{\rho \rightarrow 0, \text { or } L \rightarrow \infty} \rightarrow \frac{\rho^{L}}{(2 L+1)!!} \exp \left[-\frac{\rho^{2}}{2(2 L+3)}\right] \tag{6.6a}
\end{equation*}
$$

where the symbol ($\rho \rightarrow 0$, or $L \rightarrow \infty$) means that the statements $\rho \rightarrow 0$ and $L \rightarrow \infty$ cannot be valid simultaneously. Evidently, the error made in (6.4) by using the function (6.5) for $v_{L}(\rho)$ is reduced to $[\rho /(2 L+3)]^{2} v_{L}$.

Similarly, by making the variable transformation $u_{L}(\rho)=v_{L}(\rho) / \rho^{L}$, corresponding to the solution $(1 / \rho)^{L}$ of the approximate radial equation, and by following the same steps we just took for obtaining the two-limit formula (6.6a) for $f_{L}(\rho)$,

$$
\begin{equation*}
g_{L}(\rho)_{o \rightarrow 0, \text { or } L \rightarrow \infty} \rightarrow \frac{(2 L+1)!!}{2 L+1}\left(\frac{1}{\rho}\right)^{L} \exp \left[\frac{\rho^{2}}{2(2 L-1)}\right] \tag{6.6b}
\end{equation*}
$$

Therefore, by (2.3)

$$
\begin{equation*}
\phi_{L}(\rho)_{o \rightarrow 0 . \text { or } L \rightarrow \infty} \rightarrow \frac{(2 L+1) \rho^{2 L+1}}{[(2 L+1)!!]^{2}} \exp \left\{-\rho^{2}(2 L+1) /[(2 L+3)(2 L-1)]\right\} \tag{6.7}
\end{equation*}
$$

and, by differentiation (see (2.5))

$$
\begin{equation*}
\zeta_{L}(\rho)_{o x 0, \text { or } L \rightarrow \infty} \rightarrow\left[\frac{2 L+1}{(2 L+1)!!}\right]^{2} \rho^{2 L} \exp \left(-\frac{\rho^{2}}{2 L-1}\right) \tag{6.8}
\end{equation*}
$$

Note that the first two terms in the developments of (6.7) and (6.8) are exactly the same as those of the developments given respectively, in (6.2) and (6.1) for $\phi_{L}(\rho)$ and $\zeta_{L}(\rho)$.

Next, we calculate $\frac{1}{2}(d / d \rho)\left(\log \zeta_{L}\right)$ from (6.8) and by introducing this term into the definitions of $\eta_{L} \pm(\rho)$ (see formulas above (3.4)) we determine how these functions behave at the origin or for $L \gg \rho$

$$
\begin{equation*}
\eta_{L}^{+}(\rho)_{o \rightarrow 0, \text { or } L \rightarrow \infty} \rightarrow \frac{\rho}{2 L-1} \tag{6.9a}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{L}^{-}(\rho)_{\rho \rightarrow 0, \text { or } L \rightarrow \infty} \rightarrow \frac{2 L+1}{\rho}-\frac{\rho}{2 L-1} \tag{6.9b}
\end{equation*}
$$

Before closing this section we would like to point out that, according to radial Eq. (1.2), any of its solutions has points of inflexion at $\rho_{0}=(L(L+1))^{1 / 2}$ or at any one of its zeros. Therefore, the solutions $f_{L}(\rho)$ and $g_{L}(\rho)$ of this equation, that are positive near the origin (see (6.3)) and have positive curvatures there, cannot change signs before crossing a point of inflexion. As their zeros are beyond ρ_{0}, with the exception of the origin belonging to $f_{L}(\rho)$ (see [1, p. 440]), we can say that $f_{L}(\rho)$ and $g_{L}(\rho)$ (and consequently $j_{L}(\rho)$ and $n_{L}(\rho)$) are defined positive functions in the interval $0<\rho<\rho_{0}$.

It is also well known that the zeros of $f_{L}(\rho)$ and $g_{L}(\rho)$ interlace. Therefore the first zero of $g_{L}(\rho)$ lies between ρ_{0} and the second zero of $f_{L}(\rho)$.

This property helps to understand the behavior of the phases with ρ. In fact $\phi_{L}(\rho)$ is an increasing positive function on the interval $0 \gtrless \rho \gtrless+\infty$, because it is positive near the origin (see (6.2) or $(6,7)$) and its derivative $\zeta_{L}(\rho)$ is also a positive function in the same interval (see Section 4). Therefore, when ρ goes from zero to infinity, $\phi_{L}(\rho)$ starts at the origin, then increases up to $\pi / 2$ when ρ attains the first zero of $g_{L}(\rho)$, then up to π when ρ reaches the second zero of $f_{L}(\rho)$, then goes into $3 \pi / 2$ at the second zero of $g_{L}(\rho)$ and so on.

7. Numerical Calculations. Instability of Some of the Preceding Functions

Tables II and III give some numerical values of the functions $\phi_{L}(\rho), j_{L}(\rho)$, and $n_{L}(\rho)$ for $\rho=10$.

The columns marked "FORWARD" were calculated using recurrence procedures that start at $L=0$ and go up step by step until $L=30$. The columns marked "BACKWARD" were started at $L=30$ and carried on by steps of one unit for a decreasing L until $L=0$.

TABLE II
The "FORWARD" Column is Unstable below the Arrow. The "BACKWARD" Column is Stable for any L

$$
\rho=10
$$

	$\phi_{L}(\rho)$	$\phi_{L}(\rho)$
L	FORWARD	BACKWARD
0	.10000000E 02	.10000000E 02
1	.85288723E 01	.85288723E 01
2	.71583545E 01	.71583545E 01
3	.58903975E 01	. 58903975 E 01
4	.47281083E 01	.47281083E 01
5	. 36759911 E 01	.36759911E 01
6	.27402982E 01	.27402982E 01
7	.19294626E 01	.19294626E 01
8	. 12543731 E 01	.12543731E 01
9	.72753693E 00	.72753693E 00
10	. 35844032 E 00	. 35844032 E 00
11	.14149005E 00	.14149005E 00
12	.42803519E-01	.42803519E-01
13	. $98857258 \mathrm{E}-02$. $98857258 \mathrm{E}-02$
14	.17966495E-02	.17966495E-02
15	. $26641372 \mathrm{E}-03$.26641372E-03
16	. $33142982 \mathrm{E}-04$. $33142982 \mathrm{E}-04$
17	. $35281110 \mathrm{E}-05$. $35281110 \mathrm{E}-05$
18	. $32610769 \mathrm{E}-06$. $32610769 \mathrm{E}-06$
$\rightarrow 19$. $26475452 \mathrm{E}-07$. $26475452 \mathrm{E}-07$
20	.19058388E-08	.19058386E-08
21	. $12261503 \mathrm{E}-09$. $12261475 \mathrm{E}-09$
22	. $70992101 \mathrm{E}-11$.70987313E-11
23	. $37259085 \mathrm{E}-12$. $37203805 \mathrm{E}-12$
24	. $18429702 \mathrm{E}-13$.17743705E-13
25	. $15543122 \mathrm{E}-14$.77371850E-15
26	.88817842E-15	. $30976070 \mathrm{E}-16$
27	.88817842E-15	.11429347E-17
28	.88817842E-15	. $39000057 \mathrm{E}-19$
29	.88817842E-15	.12345976E-20
30	.88817842E-15	. $36362789 \mathrm{E}-22$

581/25/2-9

TABLE III
The "FORWARD" Column for $j_{L}(\rho)$ is Unstable below the Arrow. The Other Two Columns are Stable for any L

$$
\rho=10
$$

L	$j_{L}(\rho)$	$j_{L}(\rho)$	$n_{L}(\rho)$
	FORWARD	BACKWARD	FORWARD
0	-. $54402111 \mathrm{E}-01$	-. $54402111 \mathrm{E}-01$	-.83907153E-01
1	.78466942E-01	.78466942E-01	-. $62792826 \mathrm{E}-01$
2	. $77942194 \mathrm{E}-01$.77942194E-01	.65069305E-01
3	-.39495845E-01	-.39495845E-01	. $95327479 \mathrm{E}-01$
4	$-.10558929 \mathrm{E} 00$	$-.10558929 \mathrm{E} 00$.16599302E-02
5	-.55534512E-01	-.55534512E-01	-. $93833542 \mathrm{E}-01$
6	. $44501322 \mathrm{E}-01$. $44501322 \mathrm{E}-01$	-.10487683E 00
7	.11338623E 00	.11338623E 00	-.42506332E-01
8	.12557802E 00	.12557802E 00	. $41117328 \mathrm{E}-01$
9	. 10009641 E 00	.10009641E 00	.11240579E 00
10	.64605154E-01	. $64605154 \mathrm{E}-01$.17245367E 00
11	. $35574415 \mathrm{E}-01$. $35574415 \mathrm{E}-01$.24974692E 00
12	. $17216000 \mathrm{E}-01$. $17216000 \mathrm{E}-01$. 40196425 E 00
13	.74655845E-02	.74655845E-02	.75516370E 00
14	. $29410783 \mathrm{E}-02$. $29410783 \mathrm{E}-02$.16369777E 01
15	. $10635427 \mathrm{E}-02$.10635427E-02	. 39920717 E 01
16	. $35590407 \mathrm{E}-03$. $35590407 \mathrm{E}-03$.10738445E 02
17	. $11094073 \mathrm{E}-03$. $11094073 \mathrm{E}-03$. 31444796 E 02
$\rightarrow 18$. $32388474 \mathrm{E}-04$. $32388474 \mathrm{E}-04$. 99318340 E 02
19	.88966268E-05	.88966273E-05	. 33603306 E 03
20	.23083702E-05	. $23083720 \mathrm{E}-05$.12112106E 04
21	.56769095E-06	. $56769777 \mathrm{E}-06$. 46299304 E 04
22	.13270091E-06	.13272846E-06	.18697490E 05
23	. $29463159 \mathrm{E}-07$.29580290E-07	.79508775E 05
24	.57759327E-08	. $62989045 \mathrm{E}-08$.35499375E 06
25	-.11610885E-08	.12843422E-08	.16599606E 07
26	-.11697484E-07	.25124088E-09	. 81108054 E 07
27	-.60835578E-07	. $47234414 \mathrm{E}-10$. 41327308 E 08
28	-.32289819E-06	.85483986E-11	.21918939E 09
29	-.17796841E-05	.14914584E-11	.12080522E 10
30	-.10177238E-04	.25120574E-12	.69083186E 10

Note that only the "backward" recurring procedure is stable for $\phi_{L}(\rho)$ and $j_{L}(\rho)$. On the contrary the "forward" recurring procedure is stable for $n_{L}(\rho)$. (Consult [1, p. 452; 6]).

In Tables II and III the arrows indicate the values of $L(>\rho)$ up to which we can go with a precision of eight correct figures for $\phi_{L}(\rho)$ and $j_{L}(\rho)$ by using the corresponding "forward" recurrence formulas in a double-precision FORTRAN IV (15 digits) programme.

Consider the mechanism of the instability of $\phi_{L}(\rho)$ and $f_{L}(\rho)$ (or $j_{L}(\rho)$) when L becomes larger than ρ in a "forward" (increasing L) recurrence procedure.

Take, for instance, $\phi_{L}(\rho)$. We can rewrite (3.6a) as

$$
\begin{equation*}
\phi_{L+1}(\rho)=\phi_{L}(\rho)-\tan ^{-1}\left[\frac{\zeta_{L}(\rho)}{\eta_{L}-(\rho)}\right] \tag{7.1}
\end{equation*}
$$

Now, from (6.7) and (6.8) we have for $L \gg \rho$

$$
\begin{equation*}
\phi_{L}(\rho) \simeq \frac{\rho}{2 L+1} \cdot \zeta_{L}(\rho) \exp \left[\frac{2 \rho^{2}}{(2 L+3)(2 L-1)}\right] \tag{7.2}
\end{equation*}
$$

Similarly we obtain from (6.9b) for the same L

$$
\begin{equation*}
\eta_{L}^{-}(\rho) \simeq \frac{2 L+1}{\rho} \exp \left[-\frac{\rho^{2}}{(2 L+1)(2 L-1)}\right] \tag{7.3}
\end{equation*}
$$

Thus we have approximately for the second term in the recurrence relation (7.1)

$$
\begin{equation*}
\tan ^{-1}\left[\frac{\zeta_{L}(\rho)}{\eta_{L}^{-}(\rho)}\right] \simeq \frac{\rho}{2 L+1} \zeta_{L}(\rho) \exp \left[\frac{\rho^{2}}{(2 L+1)(2 L-1)}\right] \tag{7.4}
\end{equation*}
$$

i.e., a term of the same sign as $\phi_{L}(\rho)$ in (7.2) and very close to it in magnitude. Hence, the difference ϕ_{L+1} between these terms in (7.1) will be unstable for large L.

Next we consider $f_{L}(\rho)$ or $j_{L}(\rho)=f_{L}(\rho) / \rho$. The two terms in the recurrence formula (5.3a), i.e.,

$$
\begin{equation*}
f_{L+1}(\rho)=\eta_{L}^{-}(\rho) f_{L}(\rho)-\zeta_{L}(\rho) g_{L}(\rho) \tag{5.3a}
\end{equation*}
$$

give approximately for $L \gg \rho$ (see 7.2) and (7.3))

$$
\begin{equation*}
\eta_{L}^{-}(\rho) f_{L}(\rho) \sim \zeta_{L}^{1 / 2}(\rho) \exp \left[\frac{\rho^{2}}{(2 L+3)(2 L+1)}\right] \tag{7.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\zeta_{L}(\rho) g_{L}(\rho) \simeq \zeta_{L}^{1 / 2}(\rho) \tag{7.6}
\end{equation*}
$$

Again these two terms have the same sign and are very close to one another in magnitude, so that their difference ($f_{L+1}(\rho)$) becomes numerically inaccurate with increasing L.

Finally we deal with the problem of calculating the initial values to start the "backward" (decreasing L) recurring procedure.

The fundamental relation for such a calculation is the recurrence formula (3.5a) rewritten as

$$
\begin{equation*}
\phi_{L}(\rho)=\phi_{L+1}(\rho)+\tan ^{-1}\left[\frac{\zeta_{L+1}(\rho)}{\eta_{L+1}^{+}(\rho)}\right] \tag{7.7}
\end{equation*}
$$

from which we derive the rapidly convergent series

$$
\begin{equation*}
\phi_{L}(\rho)=\sum_{s=1}^{\infty} \tan ^{-1}\left[\frac{\zeta_{L+s}(\rho)}{\eta_{L+s}^{+}(\rho)}\right] \tag{7.8a}
\end{equation*}
$$

when $L>\rho$ (see (6.8) and (6.9a)).

If L is sufficiently larger than ρ, so that $\tan ^{-1}\left[\zeta_{L}(\rho) / \eta_{L}{ }^{+}(\rho)\right] \simeq \zeta_{L}(\rho) / \eta_{L}{ }^{+}(\rho)$ is a good approximation, we can simplify (7.8a) and write

$$
\begin{equation*}
\phi_{L}(\rho) \simeq \sum_{s=1}^{N} \frac{\zeta_{L+s}(\rho)}{\eta_{L+s}^{+}(\rho)} \tag{7.8b}
\end{equation*}
$$

For such values of L and from (5.2b), (6.5), and (6.6) we also have the approximate relations

$$
\begin{equation*}
g_{L}(\rho) \simeq \eta_{L+1}^{+}(\rho) g_{L+1}(\rho) \tag{7.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\zeta_{L}(\rho) \simeq 1 /\left[g_{L}(\rho)\right]^{2} \tag{7.10}
\end{equation*}
$$

Therefore we can write (7.8b) as

$$
\begin{equation*}
\phi_{L}(\rho) \simeq \sum_{s=0}^{N} \frac{1}{g_{L+s}(\rho) g_{L+s+1}(\rho)} \tag{7.11}
\end{equation*}
$$

and from (2.1) and (2.2)

$$
\begin{equation*}
f_{L}(\rho) \simeq g_{L}(\rho) \sum_{s=0}^{N} \frac{1}{g_{L+s}(\rho) g_{L+s+1}(\rho)} \tag{7.12}
\end{equation*}
$$

The remarkable thing about the expansion (7.12) is that it can be obtained exactly (see [6]) from the Wronskian relation

$$
\begin{equation*}
f_{L}(\rho) g_{L+1}(\rho)-f_{L+1}(\rho) g_{L}(\rho)=1 \tag{7.13a}
\end{equation*}
$$

written as

$$
\begin{equation*}
\frac{f_{L}(\rho)}{g_{L}(\rho)}=\frac{f_{L+1}(\rho)}{g_{L+1}(\rho)}+\frac{1}{g_{L}(\rho) g_{L+1}(\rho)} \tag{7.13b}
\end{equation*}
$$

From this recurrence formula for the ratio $f_{L}(\rho) / g_{L}(\rho)$ we immediately obtain (7.12). We note that, according to the discussion at the end of Section 6, the $g_{L}(\rho)$ cannot vanish for $L>\rho$. Thus, the terms of the development (7.12) for $f_{L}(\rho)$ never become infinite.

The functions $\eta_{L}{ }^{+}(\rho)$, required in the "backward" recurrence procedure, must be calculated by means of the formula (see (3.6b) and (3.7)).

$$
\begin{equation*}
\eta_{L+1}^{+}=\eta_{L}^{-} /\left[\left(\eta_{L}^{-}\right)^{2}+\left(\zeta_{L}\right)^{2}\right] . \tag{7.14}
\end{equation*}
$$

The "backward" recurrence relation (3.5c) for the determination of the $\eta_{L}{ }^{+}(\rho)$ is numerically unstable for $L \gg \rho$. This can be seen by following similar steps as those taken in this section in showing the numerical instability of the recurrence relations (3.6a) and (5.3a) for $\phi_{L}(\rho)$ and $f_{L}(\rho)$, respectively.

Finally we would like to point out that the "foreward" (increasing L) recurrence formulas presented in this article for $j_{L}(\rho)$ and $f_{L}(\rho)$ are more stable than the familiar three-term recurrence relation $[1,6]$.

All the calculations were performed at the Coimbra University with the SIGMA 5 XEROX computer.

Acknowledgments

I would like to thank Professor J. da Providência for his encouragement in writing the present article and for his help and enlightened comments.

References

1. M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions," p. 437n, Dover, New York, 1965.
2. L. Infeld and T. E. Hull; Rev: Modern. Phys. 23 (1951), 21-68.
3. P. de A. P. Martins, J. Phys. B (Proc. Phys. Soc.) 1 (1969), 154-162.
4. P. de A. P. Martins, Proc. Cambridge Philos. Soc. 69 (1971), 167-173.
5. A. Messiah, "Quantum Mechanics," Vol. I, App. B, North-Holland, Amsterdam, 1961.
6. J. G. Wills, J. Computational Phys. 8 (1971), 162-166.

Received: November 18, 1975; revised January 17, 1977
Pedro de A. P. Marting
Departamento de Fisica
Universidade de Coimbra
Portugal

